首頁
1
最新消息
2
技術新知
3
研究實現相對論性強雷射驅動超熱電子束飛秒動力學的即時測量4
https://www.steo.com.tw/ 超鋒科技股份有限公司
超鋒科技股份有限公司 238 新北市新北市樹林區東豐街49巷45號
飛秒雷射脈寬窄、頻譜寬,對色散會有特別嚴格的要求。 短脈衝對色散非常敏感,當脈衝長度的平方小於群延遲色散時,會產生顯著的脈衝展寬。 只有低色散的鏡片和膜層才能保證飛秒雷射在傳播過程中保持原有的特性。 同時,飛秒雷射在傳播過程中不可避免地會發生展寬或啁啾,需要利用特別的負色散鏡進行調節補償,因此低群速度色散GDD反射鏡和負色散鏡對飛秒雷射的應用特別關鍵。低群色散GDD鏡片和高品質負色散鏡,需要獨特的膜層技術能夠精確控制鏡片和膜層的色散特性。由於不同頻率復色光的光在同一介質中的折射率不一樣,因此不同頻率的光相速度也不一樣,導致它們會以不同的折射角被分解而在出射區域形成光譜,這就叫色散。 群速度的概念和波包相關,波包相當與多種頻率得光波組成的集合。 波包最大振幅處的傳播速度就是群速度。 當波包在介質中傳播史,由於波包中不同頻率得光波會有不同的傳播速度,於是波包的形狀會發生變化,這就是群速度色散(GVD,Group Velocity Dispersion),也稱之為群速彌散。 當脈衝長度的平方小於群延遲色散時,會產生顯著的脈衝展寬。 下圖是當脈衝通過介質時產生的脈衝展寬現象。GVD本質上指的是群速度在光通過透明介質時,它發生的變化和頻率或波長有關的現象。 這個術語也可以用作一個精確定義的量,即逆群速度對角頻率(有時是波長)的導數,GVD的值可以由以下公式表達:GVD=∂∂ω1vg=∂∂ω∂k∂ω=∂2k∂ω2其中k是頻率相關的波數,在考慮到與波導相關的應用時,我們可以用β進行代替。由於群速度色散是單位長度的群延遲色散,當我們要計算一個波導的群延遲色散時,可以用群速度色散與波導長度進行相乘,其基本單位是s2/m。 例如,二氧化矽在800 nm處的群速度色散為35 fs2/mm,在1500 nm處的群速度色散為- 26 fs2/mm。 在這些波長之間的某個地方(約1.3微米),存在著零色散波長。在光纖通信中,群速度色散的定義不是群速度對角頻率的導數,而是定義為對波長的導數。 由以下GVD參數可以計算出:Dλ=∂∂λ1vg=-2πcλ2∙GVD=-2πcλ2∂2k∂ω2上述的這個量通常以ps/(nm km)為單位(每納米波長變化的皮秒數和公里傳播距離)。 例如,20ps /(nm km)在1550nm(電信光纖的一個典型值)相當於- 25509 fs2/m。重要的是要認識到由於長波長對應較小的光學頻率而產生的GVD和Dλ的不同意義。 正態色散意味著隨著光頻率的增加群速度降低; 這在大多數情況下都會發生,而負色散與之相反。 根據不同的情況,群速度色散可以有不同的重要影響: 它與超短脈衝的色散時間展寬或壓縮有關。 在光纖中,非線性效應強烈地依賴於群速度色散。 例如,可能會有光譜展寬或壓縮,這取決於色散特性。 在參數非線性相互作用中,色散也是不同波群速度不匹配的原因。 例如,它可以限制倍頻器、光參量振蕩器和放大器的交互頻寬。 綜合上述原因,我們知道超快雷射由於時間脈寬窄,頻域譜寬較大,因此對色散會有特別嚴格的要求。 短脈衝對色散非常敏感。 當脈衝長度的平方小於群延遲色散時,會產生顯著的脈衝展寬。 群速度只有在群速彌散效應非常小的情況下才有意義,如果群速彌散效應非常大,波包可能很快就會解體,這時的群速度也就沒有意義了。 只有低色散的鏡片和膜層才能保證飛秒雷射在傳播過程中保持原有的特性。 只有低色散的鏡片和膜層才能保證飛秒雷射在傳播過程中保持原有的特性。 要使群速度色散非常小,就必須使得波包的頻寬非常小。群延遲色散(GDD)和三階色散(TOD)如果脈衝被介質反射鏡反射,改反射鏡表面鍍由高、低折射率交替相疊的薄膜層,會有一個相移在原始和反射的脈衝之間產生。 一般來說,相移Φ(ω)在中心頻率附近ω0可能擴大ω0附近的泰勒級數頻率表達式為:其中Φ' (ω0)為群延遲(GD,Group Delay),Φ'' (ω0)為群延遲色散(GDD,Group Delay Dispersion),Φ''' (ω0)為三階色散(TOD,Third Order Dispersion),更嚴格地說,這種展開式只適用於完全可以解的模型,變換限制高斯脈衝的傳播和純相位色散。 對於非常短的脈衝和振幅和相位色散的組合,數值計算可能是必要的。 然而,這一擴展清楚地顯示了單個術語的物理意義:假設相移是線性的頻率(即GD≠0, GDD = 0和TOD = 0脈衝頻寬),反射的脈衝是由不斷的群延遲的影響而發生相位延遲,當然,縮放的振幅反射率和脈衝頻譜仍將不失真。 當GDD≠0時,觀察到兩個重要效應:反射脈衝被暫時加寬。 這種展寬效應只取決於GDD的絕對值。我司提供「低GDD雷射鏡片」,即鏡片在給定波長範圍內|GDD|<20 fs2; 當脈衝被這些反射鏡反射時,需要這個鏡片的作用來保持脈衝形狀。此外,脈衝變成“啁啾”,即它在脈衝時間改變其瞬時頻率。 這種效應取決於GDD的信號,所以暫態頻率可能會變高(上調-啁啾,GDD>0)或更低(向下-啁啾,GDD<0)。 這允許通過使用負GDD反射鏡來補償非線性光學元件的正GDD效應。 如下圖所示,可以通過正負GDD來平衡色散的震蕩。同時,飛秒雷射在傳播過程中不可避免地會發生展寬或啁啾,需要利用特別的負色散鏡進行調節補償,因此低群延遲色散GDD反射鏡和負色散鏡對飛秒鐳射的應用特別關鍵。 TOD還決定了脈衝長度和脈衝形狀(有可能引起脈衝失真),在脈衝長度為20fs及以下時,TOD是一個非常重要的因素。 在低群色散GDD鏡片和高品質負色散鏡領域,需要獨特的膜層技術能夠精確控制鏡片和膜層的色散特性。 https://www.steo.com.tw/hot_512703.html 群速度色散(GVD)和群延遲色散(GDD) 2025-04-02 2026-04-02
超鋒科技股份有限公司 238 新北市新北市樹林區東豐街49巷45號 https://www.steo.com.tw/hot_512703.html
超鋒科技股份有限公司 238 新北市新北市樹林區東豐街49巷45號 https://www.steo.com.tw/hot_512703.html
https://schema.org/EventMovedOnline https://schema.org/OfflineEventAttendanceMode
2025-04-02 http://schema.org/InStock TWD 0 https://www.steo.com.tw/hot_512703.html

相關連結:https://laser.ofweek.com/2024-07/ART-8100-2400-30639187.html

在超短超強雷射與物質相互作用中,會產生短脈寬、高能量的電子,通常被稱為「超熱電子」。超熱電子的產生和傳輸是雷射高能量密度物理的重要基本問題之一。超熱電子可以激發很寬波段的超快電磁輻射,也可以驅動離子加速,快速加熱物質,作為慣性約束核融合「快點火」過程中的能量載體。各種次級輻射和粒子源的性質、等離子體加熱和能量沉積過程與超熱電子的時間、空間和能量特徵及演化動力學息息相關。經過多年研究,人們對超熱電子的能量和空間特徵已經比較清楚,但由於缺乏合適的高時間分辨測量手段,對超熱電子束時間結構和動力學過程的診斷仍然面臨挑戰。

中國科學院物理研究所/北京凝聚態物理國家研究中心光物理重點實驗室特聘研究員廖國前、研究員李玉同和中國科學院院士張傑等,對超強激光與固體靶相互作用產生高功率太赫茲輻射的新途徑進行了多年探索,提出了基於超熱電子束相干渡越輻射的太赫茲產生模型,發展了基於非共線自相關的單發超寬頻太赫茲探測技術。在上述成果基礎上,近日,研究人員提出了太赫茲輻射診斷超熱電子束的新方法,利用自主研發的高時間分辨單發太赫茲自相關儀,實現了超強激光與薄膜靶相互作用過程中超熱電子束時域結構及動力學的原位、即時測量。

該研究在理論上建構了太赫茲輻射性質與超熱電子束時空特徵的映射關係,給出了太赫茲脈寬與電子束脈寬、束斑尺寸、發射角等參數的定量聯繫。該研究準確地表徵了雷射-固體靶作用中幾十飛秒量級的超熱電子束脈寬,發現超強雷射加速的電子束在產生時具有與驅動雷射類似的脈寬,在傳輸過程中由於速度分散和角發散導致縱向時間寬度和橫向空間尺寸逐漸展寬;直接觀測到了由於雷射脈衝二次加速和靶面鞘層場導致的超熱電子回流動力學,發現當高對比雷射與薄膜靶相互作用後,電子束在靶前後表面鞘層場之間來回反彈,持續時間可達百飛秒量級。這些結果展示了單發、無損、原位、高時間分辨率的超熱電子表徵手段,有助於理解和優化基於超熱電子的超快輻射和粒子源時空特性並發展相關應用。

相關成果以Femtosecond dynamics of fast electron pulses in relativistic laser-foil interactions為題,發表在《物理評論快報》(Physical Review Letters)。研究工作得到國家自然科學基金委員會、科學技術部和中國科學院的支持。


利用太赫茲相干渡越輻射診斷超熱電子束脈寬


利用太赫茲相干渡越輻射診斷超熱電子束脈寬


上一個 回列表 下一個